• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Kloptdatwel?

  • Home
  • Onderwerpen
    • (Bij)Geloof
    • Columns
    • Complottheorieën
    • Factchecking
    • Gezondheid
    • Hoax
    • Humor
    • K-d-Weetjes
    • New Age
    • Paranormaal
    • Pseudowetenschap
    • Reclame Code Commissie
    • Skepticisme
    • Skeptics in the Pub
    • Skeptische TV
    • UFO
    • Wetenschap
    • Overig
  • Skeptisch Chatten
  • Werkstuk?
  • Contact
  • Over Kloptdatwel.nl
    • Activiteiten agenda
    • Colofon – (copyright info)
    • Gedragsregels van Kloptdatwel
    • Kloptdatwel in de media
    • Interessante Links
    • Over het Bol.com Partnerprogramma en andere affiliate programma’s.
    • Social media & Twitter
    • Nieuwsbrief
    • Privacybeleid
    • Skeptisch Chatten
      • Skeptisch Chatten (archief 1)
      • Skeptisch Chatten (archief 2)
      • Skeptisch Chatten (archief 3)
      • Skeptisch Chatten (archief 4)

priemgetallen

De priemgetal tweeling van Oliver Sacks

22 December 2011 by Pepijn van Erp 8 Comments

De priemgetal tweeling van Oliver Sacks 1In zijn boek “The Man Who Mistook His Wife For A Hat” (1985) beschrijft Oliver Sacks een intrigerend geval van het savant-syndroom. Hij voert de tweeling John en Michael op, die van jongs af aan in inrichtingen had geleefd en  autistisch, psychotisch of ernstig geretardeerd zou zijn. Anderen vóór Sacks hadden zich al met dit tweetal bemoeid en vastgesteld dat ze erg goed waren in kalenderrekenen. Dat wil zeggen dat ze van een willekeurige datum snel konden vertellen op welke dag van de week die valt.
Sacks ontdekt echter iets veel ongebruikelijkers wanneer hij de tweeling in 1966 onderzoekt. Op een gegeven moment observeert hij dat ze zescijferige getallen uitwisselen en daarbij bijzonder in hun nopjes lijken te zijn. Sacks noteert de getallen en komt er thuis met ‘tafels van machtsverheffing, factoren, logaritmen en priemgetallen’ achter dat de getallen allemaal priemgetallen zijn! Heel frappant, te meer omdat de tweeling helemaal niet in staat was om eenvoudige rekensommetjes te maken.
De priemgetal tweeling van Oliver Sacks 2

De volgende dag keert Sacks terug met zijn boekje met priemgetallen en begint mee te doen met de tweeling. Hij noemt echter een priemgetal van acht cijfers. Na een halve minuut (of langer) begint de tweeling te glimlachen, wat voor Sacks een duidelijk teken is dat ze én blij zijn met het nieuwe speeltje (een priemgetal groter dan zij hadden bedacht) én dat ze door hebben dat Sacks hun spelletje begrijpt.
Vervolgens noemt John, na vijf minuten nadenken, een getal van negen cijfers en zijn broer even later ook. Sacks gooit er een priemgetal van tien cijfers uit zijn boekje tegenaan, wat na weer lang denken, leidt tot een antwoord van John bestaande uit een getal van twaalf cijfers. Sacks’ boekje ging maar tot tiencijferige priemgetallen en hij onttrok zich daarom aan het spel. Een uur later zouden de broers al getallen van twintig cijfers uitwisselen!

Ik kende dit verhaal al wel, maar toen ik het onlangs in Dick Swaabs Wij zijn ons brein weer tegenkwam, las ik daarin ook dat er wat skeptische geluiden waren met betrekking tot de geloofwaardigheid van dit verhaal. Reden genoeg om dat eens verder uit te zoeken!

In 2006 schreef Makoto Yamaguchi een artikel waarin hij vraagtekens zet bij het verslag van Sacks. Concreet vraagt hij welk boek(je) Sacks gebruikt zou hebben voor zijn priemgetallen tot en met tien cijfers. Als het boek álle priemgetallen tot en met tien cijfers zou bevatten, zou het namelijk meer dan 455 miljoen getallen moeten bevatten, wat natuurlijk niet kan.
Misschien bevatte zijn boekje dan maar enkele priemgetallen van tien cijfers? Yamaguchi kon geen enkel boek vinden dat in 1966 beschikbaar zou zijn geweest en dat dit soort lijsten bevat. Sacks kon hem zelf ook niet meer vertellen welk boekje het geweest was. Ook niet meer om welke getallen het ging. Alle aantekeningen waren verloren gegaan. Maar Sacks wilde wel toegeven dat zijn boekje misschien maar priemgetallen tot acht cijfers bevatte.

Als je de beschrijving van Sacks nauwgezet terugleest (lees het relevante stuk), valt op dat hij alleen van de zescijferige getallen opmerkt dat het priemgetallen zijn én van de getallen die hij zelf uit zijn boekje opleest. In de oorspronkelijke Engelse versie staat ook expliciet dat Sacks ervan uitgaat dat het 20-cijferige getal priem was, in de Nederlandse vertaling is dat minder duidelijk. De getallen van de tweeling die uit acht of meer cijfers bestaan, heeft hij in ieder geval niet getoetst. Natuurlijk was dat lastig in 1966 zonder makkelijk toegankelijke computers, maar hij heeft niet eens een poging gedaan. Het blijft bij de mededeling dat het heel moeilijk is.
In een nawoord bij het bewuste hoofdstuk (in de Nederlandse versie) heeft Sacks het nog wel over een andere rekenmethode om getallen te testen op priemheid, maar daaruit blijkt alleen maar dat hij zelf over niet veel wiskundige bagage beschikt. Sacks komt met het romantische beeld dat de tweeling een bijzondere relatie zou hebben met getallen, dat priemgetallen als het ware vanzelf voor hun ogen zouden opduiken in de zee van alle getallen. Maar het idee dat je zonder te rekenen aan een groot getal zou kunnen ‘zien’ dat het priem is, gaat er bij mij niet in. Dat sommige idot savants sneller kunnen zijn in het herkennen van priemgetallen, zegt nog niet dat ze er andere methoden voor gebruiken. Laat staan dat ze eigenschappen van getallen kunnen ‘zien’ op een manier die niet in een algoritme beschreven kan worden.

De priemgetal tweeling van Oliver Sacks 3
Oliver Sacks (foto van Mars Hill Church via Flickr)

Kunnen we het verhaal van Sacks over de zescijferige priemgetallen die de tweeling opnoemen eigenlijk ook wel geloven? Of kunnen we een andere redelijke verklaring geven voor dit op eerste gezicht toch wel opmerkelijke fenomeen? Allereerst moeten we opmerken dat het met de rekencapaciteiten van de twee heel wat minder bedroevend gesteld was dan Sacks doet voorkomen: de onderzoekers (Horwitz e.a.) die eerder (1965) hadden gesteld dat ze nauwelijks konden rekenen, schreven in 1969 dat ze in ieder geval getallen tot drie cijfers konden optellen (deze onderzoekers beschrijven alleen het kalenderrekenen, maar ik had helaas geen toegang tot die artikelen).
Hoe moeilijk is het eigenlijk om priemgetallen van zes cijfers te geven? Tussen 100.000 en 999.999 zijn er 68.906 priemgetallen. Wat is de kans dat je een priemgetal kiest als je de getallen vermijdt, waarvan je heel snel kunt zien dat ze niét priem zijn? Zo zou je wel suf moeten zijn om een even getal of een getal eindigend op 5 te kiezen, die zijn namelijk deelbaar door 2, respectievelijk 5. Velen zullen ook nog wel het trucje kennen om te bepalen of een getal deelbaar is door 3: dan neem je de som van de cijfers en dat herhaal je, totdat je ziet dat het restant een drievoud is of niet. En dan weet je het ook voor het oorspronkelijke getal. Voorbeeld: 561.251, de som van de cijfers is 20, daar weer de som van de cijfers van is 2, niet deelbaar door 3 en dus ook 561.251 niet.

Dit soort trucjes zijn er ook voor de andere lage (priem)delers 7, 11, 13, 17 enz. Aangezien de twee broers ook goed konden kalenderrekenen moeten ze haast wel geweten hebben, hoe je snel door 7 kunt delen of in ieder geval de rest bepalen bij delen door 7. Eén van de manieren om het met 7 te doen, gaat als volgt: neem van het getal dat je wil testen de laatste twee cijfers en tel daar het dubbele van alles wat er voor stond op. Het nieuwe getal is deelbaar door zeven als het oorspronkelijke getal dat ook was. Dit kun je vervolgens herhalen totdat je makkelijk ziet of het resterende getal deelbaar is. Nemen we weer als voorbeeld 561.251, dan krijg je eerst 2 x 5.612 + 51 = 11.275, dan 2 x 112 + 75 = 299, dan 2 x 2 + 99  = 103 en tenslotte 2 x 1 + 3 = 5 en daarvan is het niet al te moeilijk te zien dat het niet deelbaar door 7. En dus is 561.251 dat ook niet.
Als je de getallen van zes cijfers uitsluit waarvan je kunt zien met deze trucjes dat ze deelbaar zijn door 2, 3, 5 en 7 houdt je er nog 205.714 over. Gokken met als basis die overblijvende getallen geeft dus een kans van 33% dat je een priemgetal noemt. Dat is helemaal niet zo weinig. Als je ook de rekentruc met delen door 11 meeneemt (die eigenlijk nog makkelijker is dan die bij 7) stijgt die kans al verder naar 37%. Als deze aanpak door de tweeling werd gebruikt en Sacks maar een paar zescijferige getallen mee naar huis heeft genomen, is de kans dus niet zo héél klein dat hij bij ‘toeval’ alleen maar priemgetallen aantrof. En de vraag is ook hoe Sacks het zelf bepaalde als dat unieke boekje van hem misschien wel helemaal niet bestaan heeft.

De priemgetal tweeling van Oliver Sacks 4
Sacks noemt de 'zeef van Eratosthenes' nog als onpraktisch algoritme om grotere priemgetallen te vinden. Dat klopt, maar om een getal op priemheid te toetsen zijn er eenvoudiger middelen.

Het zou ook interessant zijn om te weten hoe de getallen genoemd zijn. Vast niet als ‘vijfhonderd-eenenzestigduizend-tweehonderd-eenenvijftig’. In ieder geval niet goed voorstelbaar bij die getallen van twintig cijfers! Waarschijnlijker zijn ze overgebracht als telefoonnummers ‘vijf-zes-een-twee-vijf-een’. Die laatste manier zou ook een aanwijzing zijn dat de tweeling de getallen eerder als rijtje cijfers dan als getal zag. Voor de rekentrucjes maakt dat niet zoveel uit en het kan verklaren waarom ze zo ‘moeiteloos’ van zes naar acht cijferige getallen stapten en zelfs nog verder konden gaan.
Opvallend in het verhaal is namelijk dat John na het tiencijferige priemgetal van Sacks met een twaalfcijferig getal kwam. Dat zou kunnen doordat hij eerst een elfcijferig getal bedacht en constateerde dat er toch een kleine deler was met de genoemde rekentrucs. Vervolgens plak je er een oneven getal achter, waarna de tests misschien opeens wel allemaal uitkomen. Een voorbeeldje: 13.725.097.771? Ah, jammer, deelbaar door 7. Laten we er een 1 achter plakken, dan krijgen we 137.250.977.711 en dat is niet deelbaar door 2,3,5 & 7. Mooi! Maar niet priem, want gelijk aan 19 x 41.893 x 172.433

In een studie van Hermelin en O’Connor (1990, Factors and primes: a specific numerical ability. Psychological Medicine, Vol. 20) blijkt dat een andere ‘idiot savant’ waarschijnlijk een soortgelijke strategie hanteerde om uit te maken of vier- en vijfcijferige getallen priem waren. Hij sloot de getallen deelbaar door 3 en 11 uit en maakte al doende toch nog redelijk wat fouten.

Wat had Sacks kunnen doen om zijn verhaal beter te onderbouwen? Op zijn minst had hij zescijferige getallen kunnen noemen die niet zo makkelijk waren te ontmaskeren als niet-priem. Bijvoorbeeld 254.539 = 331 x 769, en kijken hoe de tweeling dan zou reageren (331 en 769 zijn priem, voor de duidelijkheid). Misschien waren ze dan wel net zo blij geweest. En dat zou dan een aanwijzing zijn geweest dat ze eigenlijk alleen maar getallen met een kleine priemdeler uitsloten.
Hoe het precies zit, zullen we waarschijnlijk nooit weten als Sacks er zelf niet wat meer over uit de doeken wil doen. Je krijgt toch een beetje de indruk dat hij het verhaal wat mooier heeft gemaakt dan het in werkelijkheid was. Het kalenderrekenen van het duo is al best indrukwekkend, maar komt vaker voor in de litteratuur. De verleiding was misschien groot om met een nog iets sterker verhaal te komen. En waarom schreef hij het eigenlijk pas in 1985 op? Sacks was op zijn minst weinig geïnteresseerd (of wiskundig niet voldoende onderlegd) om het écht goed uit zoeken. Een goed verhaal moet je natuurlijk ook eigenlijk niet willen doodchecken … sorry.

Filed Under: Wetenschap Tagged With: idiot savant, Oliver Sacks, priemgetallen

Primary Sidebar

Steun ons via:
Een aankoopbol.com Partner (meer info)
Of een donatie

Schrijf je in voor de nieuwsbrief!

Skeptic RSS feed

  • Skepsis
  • Error
  • SBM
Inschrijvingen Skepsiscongres 2025 geopend: Was vroeger alles beter?
9 May 2025 - Ward van Beek
Inschrijvingen Skepsiscongres 2025 geopend: Was vroeger alles beter?

.Het vorige congres ligt nog vers in ons geheugen, maar omdat ontwikkelingen steeds sneller gaan zijn wij alweer druk bezig met het Skepsiscongres 2025, op zaterdag 1 november a.s.  De maatschappij bekeken met een skeptische bril Je hoort het vaak:…Lees meer Inschrijvingen Skepsiscongres 2025 geopend: Was vroeger alles beter? › [...]

Graancirkels op European Skeptics Congress 2024
7 May 2025 - SkepsisSiteBeheerder
Graancirkels op European Skeptics Congress 2024

Voordracht van Francesco Grassi op ESC2024 in Lyon.Lees meer Graancirkels op European Skeptics Congress 2024 › [...]

SKEPP wordt 35… en dat vieren ze!
27 April 2025 - SkepsisSiteBeheerder
SKEPP wordt 35… en dat vieren ze!

Onze Belgische zusterorganisatie SKEPP bestaat dit jaar 35 jaar. Op zaterdag 10 mei vieren ze dat met een mooi programma. Hoofdgast is de bekende skepticus en emeritus hoogleraar psychologie Chris French die onlangs ook tot erelid van SKEPP werd benoemd.…Lees meer SKEPP wordt 35… en dat vieren ze! › [...]

RSS Error: A feed could not be found at `https://skepp.be/feed`; the status code is `404` and content-type is `text/html; charset=UTF-8`

David Geier, Mail Order Pharmacist
10 May 2025 - Kathleen Seidel

David Geier was in the drug business. What was he selling before the FDA stepped in? The post David Geier, Mail Order Pharmacist first appeared on Science-Based Medicine. [...]

Dr. Vinay Prasad is Now the Medical Establishment. It’s His Job to Run RCTs, and It’s Our Job to Call Him a Lying Piece of $#!& if He Fails.
9 May 2025 - Jonathan Howard

"I wish Vinay all the best for his new role. It's a whole new state of play when the buck stops with you." The post Dr. Vinay Prasad is Now the Medical Establishment. It’s His Job to Run RCTs, and It’s Our Job to Call Him a Lying Piece of $#!& if He Fails. first appeared on Science-Based Medicine. [...]

Breathing Easy: Treating Allergic Rhinitis
8 May 2025 - Scott Gavura

Spring is a miserable season for those with seasonal allergies. There are effective drug- and non-drug measures that can control most symptoms effectively. The post Breathing Easy: Treating Allergic Rhinitis first appeared on Science-Based Medicine. [...]

Recente reacties

  • Renate1 on De linke weekendbijlage (19-2025)Ach, de heer Kennedy maakt zich druk over 300.000 kinderen die volgens complotgelovigen als sex-slaaf of iets dergelijks werken. Misschien
  • Klaas van Dijk on Bedenkingen bij het rapport over oversterfte van Ronald Meester en Marc JacobsOp https://archive.is/1Exnu staat een gearchiveerde versie van een recente posting van Ronald Meester op LinkedIn. In deze posting verwijst
  • Klaas van Dijk on Bedenkingen bij het rapport over oversterfte van Ronald Meester en Marc JacobsEen verbeterde versie van Hoofdstuk 6 van dit rapport van Ronald Meester en Marc Jacobs is op 22 april 2025
  • Hans1263 on Volgens Maurice de Hond beschikt hij over telepathische gavenHet filmpje waarin hij een trucje met Jeroen Pauw uithaalt, bewijst natuurlijk helemaal niets, ja misschien het denkniveau van De
  • Renate1 on De linke weekendbijlage (17-2025)En de paashaas is er snel vandoor gegaan,

Archief Kloptdatwel.nl

Copyright © 2025 · Metro Pro on Genesis Framework · WordPress · Log in