• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

Kloptdatwel?

  • Home
  • Onderwerpen
    • (Bij)Geloof
    • Columns
    • Complottheorieën
    • Factchecking
    • Gezondheid
    • Hoax
    • Humor
    • K-d-Weetjes
    • New Age
    • Paranormaal
    • Pseudowetenschap
    • Reclame Code Commissie
    • Skepticisme
    • Skeptics in the Pub
    • Skeptische TV
    • UFO
    • Wetenschap
    • Overig
  • Skeptisch Chatten
  • Werkstuk?
  • Contact
  • Over Kloptdatwel.nl
    • Activiteiten agenda
    • Colofon – (copyright info)
    • Gedragsregels van Kloptdatwel
    • Kloptdatwel in de media
    • Interessante Links
    • Over het Bol.com Partnerprogramma en andere affiliate programma’s.
    • Social media & Twitter
    • Nieuwsbrief
    • Privacybeleid
    • Skeptisch Chatten
      • Skeptisch Chatten (archief 1)
      • Skeptisch Chatten (archief 2)
      • Skeptisch Chatten (archief 3)
      • Skeptisch Chatten (archief 4)

RTL Nieuws over het gevaarlijk ‘buigen’ van huilbaby’s door alternatieve behandelaren

25 December 2011 by Maarten Koller 10 Comments

http://www.youtube.com/watch?v=w74Tn_Un4S8

ARTSEN WAARSCHUWEN VOOR GEVAARLIJKE THERAPIE VOOR BABY’S

Er is een wildgroei aan therapeuten die baby’s behandelen door ze dubbel te vouwen of diep te buigen. Kinderartsen en huisartsen slaan hierover alarm. De behandelmethode kan leiden tot ernstige complicaties of zelfs het overlijden van kinderen, aldus de artsen.

De behandeling wordt vooral gebruikt bij huilbaby’s. Tientallen therapeuten houden zich bezig met dit soort behandelingen, zo blijkt uit onderzoek van de researchredactie van RTL Nieuws. En het worden er steeds meer. Ook reguliere zorgverleners zoals fysiotherapeuten houden zich bezig met deze behandelingen. Zij bieden die dan vaak in hun gewone fysiotherapiepraktijk aan onder de noemer craniosacrale therapie.

Artsen noemen het ‘levensgevaarlijk’

De RTL-researchredactie maakte een rondgang langs reguliere huisartsen en kinderartsen. Zij noemen het buigen en dubbelvouwen van baby’s ‘levensgevaarlijk’. “De ademweg kan worden belemmerd, de uitzet van de borstkas kan moeilijker worden, door duwen in de nek kun je hartritmestoornissen krijgen en ook ademstoornissen en het ruggenmerg kan worden afgeknikt bij een baby”, zegt kinderarts Carin Verlaat, kinderarts in het UMC St. Radboud in Nijmegen. Ook het terugbrengen in de foetushouding is uit den boze, aldus Verlaat. “In de baarmoeder hoeft een baby niet zelf te ademen. Daarbuiten wel en als het in een foetushouding wordt gebracht, kan de ademhaling belemmerd worden.”

Het volledige nieuwsbericht staat hier.

Eerder plaatsten we op Kloptdatwel.nl de Zembla-uitzending over dit onderwerp. In die uitzending werd het geval van baby Marloe beschreven. Na een buigbehandeling overleed zij in 2007. Onlangs werd de verantwoordelijke therapeut veroordeeld tot een half jaar voorwaardelijk.

In oktober 2007 overleed een meisje van drie maanden na een behandeling. Volgens de rechtbank zag de therapeut ademnood ten onrechte aan voor ontspanning. Ook toen de baby geen teken van leven meer gaf, trad de man niet adequaat op.

De therapeut voerde de behandeling uit zonder dat hij zich was blijven bijscholen, aldus de rechtbank. Ook was hij niet bekend met de risico’s van behandelingen voor baby’s van die leeftijd.

De rechter liet bij het vonnis meewegen dat de man negatieve media-aandacht heeft gekregen en inmiddels is gestopt met zijn praktijk.

De therapeut zou zich niet regelmatig hebben laten bijscholen. Maar is de oorspronkelijke ‘scholing’ waarin deze techniek van het baby-buigen wordt aangeleerd (en die, gezien het RTL Nieuwsbericht, nog steeds wordt gebruikt) ook niet in gebreke? Het lijkt me al lange tijd bekend dat het buigen van baby’s niet goed is voor de gezondheid.

Met dank aan Conny Buzink voor de tip.

Filed Under: Algemeen, Gezondheid Tagged With: baby, buigen, cranio sacraal therapie, maloe, osteopathie, zembla

Le Mur – hoe Franse psychoanalytici denken over autisme

24 December 2011 by Maarten Koller 6 Comments

In de documentaire ‘Le Mur’ (de muur) van Sophie Robert vertellen Franse psychoanalytici hoe zij denken over autisme. Het tweede stukje tekst wat tijdens het afspelen verschijnt geeft heel kort samengevat weer hoe het er met hun denkbeelden aan toe is:

50 years of progress in science do not seem to have had any influence on their dogmatism – Sophie Robert

http://www.youtube.com/watch?v=W-zofLBFjto

In de docu kan je allerlei bizarre ideeën horen. Een spelend kind dat een hand in de open bek van een speelgoedkrokodil stopt zou reden tot zorg zijn (2:36). Dat autisten slachtoffers zouden zijn van kille moeders (18:55) (iets waar in mijn opleiding lacherig over wordt gedaan: “dat ‘we’ dat vroeger geloofden zeg”.). Een vader is een beschermende factor voor de incestueuze verlangens van een moeder (die ze altijd heeft, of ze zich daar nu bewust van is of niet) (31:08).

Ik vraag me af of  de manier van werken die deze psychoanalytici laten zien eigenlijk nog verschilt van een alternatieve behandelmethode. Als naar je eigen methode geen of weinig wetenschappelijk onderzoek wordt gedaan én je negeert daarbij ook het gedane onderzoek in andere wetenschappelijke velden, heb je dan nog iets anders over dan een geloof?

Als we de docu mogen geloven, worden 80% van de Franse psychologen nu nog steeds getraind in de psychoanalyse. Gelukkig leven we in Nederland waar psychoanalyse tijdens de studie psychologie eigenlijk alleen nog wordt besproken in de hoofdstukken over de geschiedenis van het vak.

 

Filed Under: Buitenland, Pseudowetenschap, Skeptische TV, Uit het nieuws Tagged With: autisme, le mur, psychoanalyse, psychologie

Slaapverlamming

23 December 2011 by Maarten Koller 8 Comments

De onderstaande video gaat over het fenomeen slaapverlamming.

Kort samengevat: je lichaam raakt tijdens je slaap bepaalde perioden verlamd. Dit is normaal en gebeurt bij iedereen. De achterliggende gedachte is dat je daardoor niet opeens raar gaat bewegen tijdens een droom. Wanneer deze verlamming echter al optreedt terwijl je in slaap valt, of wanneer je net wakker wordt, dan geeft dat soms een onprettige ervaring.

Over dit fenomeen doen allerlei vreemde verhalen de ronde (van ontvoeringen door buitenaardse wezens tot demonen), daarom hieronder een video over de wetenschap achter de slaapverlamming.

http://www.youtube.com/watch?v=xCSqT5nZ9n4

Wel een beetje jammer te noemen is de onnodige spannende muziek aan het begin, de zweverige muziek op het eind, de vage ervaringen van de ervaringsdeskundigen en ronduit irritant zijn de toegevoegde beelden waarin wordt beweerd “You are not your physical body” (7:51) en “It’s your energy body thats aware” (7:54).

Wil je meer informatie over dit verschijnsel dan is deze website zeer de moeite waard:

Information about Sleep Paralysis – van Dr. J Allan Cheyne (de psycholoog uit de video).

Filed Under: Wetenschap Tagged With: slaap, verlamming

De priemgetal tweeling van Oliver Sacks

22 December 2011 by Pepijn van Erp 8 Comments

De priemgetal tweeling van Oliver Sacks 1In zijn boek “The Man Who Mistook His Wife For A Hat” (1985) beschrijft Oliver Sacks een intrigerend geval van het savant-syndroom. Hij voert de tweeling John en Michael op, die van jongs af aan in inrichtingen had geleefd en  autistisch, psychotisch of ernstig geretardeerd zou zijn. Anderen vóór Sacks hadden zich al met dit tweetal bemoeid en vastgesteld dat ze erg goed waren in kalenderrekenen. Dat wil zeggen dat ze van een willekeurige datum snel konden vertellen op welke dag van de week die valt.
Sacks ontdekt echter iets veel ongebruikelijkers wanneer hij de tweeling in 1966 onderzoekt. Op een gegeven moment observeert hij dat ze zescijferige getallen uitwisselen en daarbij bijzonder in hun nopjes lijken te zijn. Sacks noteert de getallen en komt er thuis met ‘tafels van machtsverheffing, factoren, logaritmen en priemgetallen’ achter dat de getallen allemaal priemgetallen zijn! Heel frappant, te meer omdat de tweeling helemaal niet in staat was om eenvoudige rekensommetjes te maken.
De priemgetal tweeling van Oliver Sacks 2

De volgende dag keert Sacks terug met zijn boekje met priemgetallen en begint mee te doen met de tweeling. Hij noemt echter een priemgetal van acht cijfers. Na een halve minuut (of langer) begint de tweeling te glimlachen, wat voor Sacks een duidelijk teken is dat ze én blij zijn met het nieuwe speeltje (een priemgetal groter dan zij hadden bedacht) én dat ze door hebben dat Sacks hun spelletje begrijpt.
Vervolgens noemt John, na vijf minuten nadenken, een getal van negen cijfers en zijn broer even later ook. Sacks gooit er een priemgetal van tien cijfers uit zijn boekje tegenaan, wat na weer lang denken, leidt tot een antwoord van John bestaande uit een getal van twaalf cijfers. Sacks’ boekje ging maar tot tiencijferige priemgetallen en hij onttrok zich daarom aan het spel. Een uur later zouden de broers al getallen van twintig cijfers uitwisselen!

Ik kende dit verhaal al wel, maar toen ik het onlangs in Dick Swaabs Wij zijn ons brein weer tegenkwam, las ik daarin ook dat er wat skeptische geluiden waren met betrekking tot de geloofwaardigheid van dit verhaal. Reden genoeg om dat eens verder uit te zoeken!

In 2006 schreef Makoto Yamaguchi een artikel waarin hij vraagtekens zet bij het verslag van Sacks. Concreet vraagt hij welk boek(je) Sacks gebruikt zou hebben voor zijn priemgetallen tot en met tien cijfers. Als het boek álle priemgetallen tot en met tien cijfers zou bevatten, zou het namelijk meer dan 455 miljoen getallen moeten bevatten, wat natuurlijk niet kan.
Misschien bevatte zijn boekje dan maar enkele priemgetallen van tien cijfers? Yamaguchi kon geen enkel boek vinden dat in 1966 beschikbaar zou zijn geweest en dat dit soort lijsten bevat. Sacks kon hem zelf ook niet meer vertellen welk boekje het geweest was. Ook niet meer om welke getallen het ging. Alle aantekeningen waren verloren gegaan. Maar Sacks wilde wel toegeven dat zijn boekje misschien maar priemgetallen tot acht cijfers bevatte.

Als je de beschrijving van Sacks nauwgezet terugleest (lees het relevante stuk), valt op dat hij alleen van de zescijferige getallen opmerkt dat het priemgetallen zijn én van de getallen die hij zelf uit zijn boekje opleest. In de oorspronkelijke Engelse versie staat ook expliciet dat Sacks ervan uitgaat dat het 20-cijferige getal priem was, in de Nederlandse vertaling is dat minder duidelijk. De getallen van de tweeling die uit acht of meer cijfers bestaan, heeft hij in ieder geval niet getoetst. Natuurlijk was dat lastig in 1966 zonder makkelijk toegankelijke computers, maar hij heeft niet eens een poging gedaan. Het blijft bij de mededeling dat het heel moeilijk is.
In een nawoord bij het bewuste hoofdstuk (in de Nederlandse versie) heeft Sacks het nog wel over een andere rekenmethode om getallen te testen op priemheid, maar daaruit blijkt alleen maar dat hij zelf over niet veel wiskundige bagage beschikt. Sacks komt met het romantische beeld dat de tweeling een bijzondere relatie zou hebben met getallen, dat priemgetallen als het ware vanzelf voor hun ogen zouden opduiken in de zee van alle getallen. Maar het idee dat je zonder te rekenen aan een groot getal zou kunnen ‘zien’ dat het priem is, gaat er bij mij niet in. Dat sommige idot savants sneller kunnen zijn in het herkennen van priemgetallen, zegt nog niet dat ze er andere methoden voor gebruiken. Laat staan dat ze eigenschappen van getallen kunnen ‘zien’ op een manier die niet in een algoritme beschreven kan worden.

De priemgetal tweeling van Oliver Sacks 3
Oliver Sacks (foto van Mars Hill Church via Flickr)

Kunnen we het verhaal van Sacks over de zescijferige priemgetallen die de tweeling opnoemen eigenlijk ook wel geloven? Of kunnen we een andere redelijke verklaring geven voor dit op eerste gezicht toch wel opmerkelijke fenomeen? Allereerst moeten we opmerken dat het met de rekencapaciteiten van de twee heel wat minder bedroevend gesteld was dan Sacks doet voorkomen: de onderzoekers (Horwitz e.a.) die eerder (1965) hadden gesteld dat ze nauwelijks konden rekenen, schreven in 1969 dat ze in ieder geval getallen tot drie cijfers konden optellen (deze onderzoekers beschrijven alleen het kalenderrekenen, maar ik had helaas geen toegang tot die artikelen).
Hoe moeilijk is het eigenlijk om priemgetallen van zes cijfers te geven? Tussen 100.000 en 999.999 zijn er 68.906 priemgetallen. Wat is de kans dat je een priemgetal kiest als je de getallen vermijdt, waarvan je heel snel kunt zien dat ze niét priem zijn? Zo zou je wel suf moeten zijn om een even getal of een getal eindigend op 5 te kiezen, die zijn namelijk deelbaar door 2, respectievelijk 5. Velen zullen ook nog wel het trucje kennen om te bepalen of een getal deelbaar is door 3: dan neem je de som van de cijfers en dat herhaal je, totdat je ziet dat het restant een drievoud is of niet. En dan weet je het ook voor het oorspronkelijke getal. Voorbeeld: 561.251, de som van de cijfers is 20, daar weer de som van de cijfers van is 2, niet deelbaar door 3 en dus ook 561.251 niet.

Dit soort trucjes zijn er ook voor de andere lage (priem)delers 7, 11, 13, 17 enz. Aangezien de twee broers ook goed konden kalenderrekenen moeten ze haast wel geweten hebben, hoe je snel door 7 kunt delen of in ieder geval de rest bepalen bij delen door 7. Eén van de manieren om het met 7 te doen, gaat als volgt: neem van het getal dat je wil testen de laatste twee cijfers en tel daar het dubbele van alles wat er voor stond op. Het nieuwe getal is deelbaar door zeven als het oorspronkelijke getal dat ook was. Dit kun je vervolgens herhalen totdat je makkelijk ziet of het resterende getal deelbaar is. Nemen we weer als voorbeeld 561.251, dan krijg je eerst 2 x 5.612 + 51 = 11.275, dan 2 x 112 + 75 = 299, dan 2 x 2 + 99  = 103 en tenslotte 2 x 1 + 3 = 5 en daarvan is het niet al te moeilijk te zien dat het niet deelbaar door 7. En dus is 561.251 dat ook niet.
Als je de getallen van zes cijfers uitsluit waarvan je kunt zien met deze trucjes dat ze deelbaar zijn door 2, 3, 5 en 7 houdt je er nog 205.714 over. Gokken met als basis die overblijvende getallen geeft dus een kans van 33% dat je een priemgetal noemt. Dat is helemaal niet zo weinig. Als je ook de rekentruc met delen door 11 meeneemt (die eigenlijk nog makkelijker is dan die bij 7) stijgt die kans al verder naar 37%. Als deze aanpak door de tweeling werd gebruikt en Sacks maar een paar zescijferige getallen mee naar huis heeft genomen, is de kans dus niet zo héél klein dat hij bij ‘toeval’ alleen maar priemgetallen aantrof. En de vraag is ook hoe Sacks het zelf bepaalde als dat unieke boekje van hem misschien wel helemaal niet bestaan heeft.

De priemgetal tweeling van Oliver Sacks 4
Sacks noemt de 'zeef van Eratosthenes' nog als onpraktisch algoritme om grotere priemgetallen te vinden. Dat klopt, maar om een getal op priemheid te toetsen zijn er eenvoudiger middelen.

Het zou ook interessant zijn om te weten hoe de getallen genoemd zijn. Vast niet als ‘vijfhonderd-eenenzestigduizend-tweehonderd-eenenvijftig’. In ieder geval niet goed voorstelbaar bij die getallen van twintig cijfers! Waarschijnlijker zijn ze overgebracht als telefoonnummers ‘vijf-zes-een-twee-vijf-een’. Die laatste manier zou ook een aanwijzing zijn dat de tweeling de getallen eerder als rijtje cijfers dan als getal zag. Voor de rekentrucjes maakt dat niet zoveel uit en het kan verklaren waarom ze zo ‘moeiteloos’ van zes naar acht cijferige getallen stapten en zelfs nog verder konden gaan.
Opvallend in het verhaal is namelijk dat John na het tiencijferige priemgetal van Sacks met een twaalfcijferig getal kwam. Dat zou kunnen doordat hij eerst een elfcijferig getal bedacht en constateerde dat er toch een kleine deler was met de genoemde rekentrucs. Vervolgens plak je er een oneven getal achter, waarna de tests misschien opeens wel allemaal uitkomen. Een voorbeeldje: 13.725.097.771? Ah, jammer, deelbaar door 7. Laten we er een 1 achter plakken, dan krijgen we 137.250.977.711 en dat is niet deelbaar door 2,3,5 & 7. Mooi! Maar niet priem, want gelijk aan 19 x 41.893 x 172.433

In een studie van Hermelin en O’Connor (1990, Factors and primes: a specific numerical ability. Psychological Medicine, Vol. 20) blijkt dat een andere ‘idiot savant’ waarschijnlijk een soortgelijke strategie hanteerde om uit te maken of vier- en vijfcijferige getallen priem waren. Hij sloot de getallen deelbaar door 3 en 11 uit en maakte al doende toch nog redelijk wat fouten.

Wat had Sacks kunnen doen om zijn verhaal beter te onderbouwen? Op zijn minst had hij zescijferige getallen kunnen noemen die niet zo makkelijk waren te ontmaskeren als niet-priem. Bijvoorbeeld 254.539 = 331 x 769, en kijken hoe de tweeling dan zou reageren (331 en 769 zijn priem, voor de duidelijkheid). Misschien waren ze dan wel net zo blij geweest. En dat zou dan een aanwijzing zijn geweest dat ze eigenlijk alleen maar getallen met een kleine priemdeler uitsloten.
Hoe het precies zit, zullen we waarschijnlijk nooit weten als Sacks er zelf niet wat meer over uit de doeken wil doen. Je krijgt toch een beetje de indruk dat hij het verhaal wat mooier heeft gemaakt dan het in werkelijkheid was. Het kalenderrekenen van het duo is al best indrukwekkend, maar komt vaker voor in de litteratuur. De verleiding was misschien groot om met een nog iets sterker verhaal te komen. En waarom schreef hij het eigenlijk pas in 1985 op? Sacks was op zijn minst weinig geïnteresseerd (of wiskundig niet voldoende onderlegd) om het écht goed uit zoeken. Een goed verhaal moet je natuurlijk ook eigenlijk niet willen doodchecken … sorry.

Filed Under: Wetenschap Tagged With: idiot savant, Oliver Sacks, priemgetallen

FBTO vergoedt ‘echte’ alternatieve geneeswijzen

21 December 2011 by Maarten Koller 50 Comments

Als onderdeel van een reclamecampagne laat FBTO dit bijzondere reclamespotje op de radio spelen:

[audio:https://s3-eu-west-1.amazonaws.com/kloptdatwel.nl/FBTO-alternatievegeneeswijzenreclame.mp3]
Mocht de speler niet werken klik dan hier voor de mp3.

Transcript:

*geluid van huilende baby*

vrouwenstem: “oh dan moet je een prei naast z’n wieg hangen… of een bakje maanzaad, werkt bij mij altijd”

Mannenstem: “Mooi moment om de module voor echte alternatieve geneeswijzen aan te zetten. Dat kan met de zorgverzekering van FBTO, die kan je maandelijks aanpassen aan jouw wereld. En dat met de scherpe basispremie van maar 96 euro 75. Ga naar FBTO.nl.”

Daar komen dus twee dingen uit naar voren:

Ten eerste kun je bij FBTO blijkbaar de module voor ‘echte’ alternatieve geneeswijzen dus ook uit zetten! Zeer positief lijkt me. De Vereniging tegen de Kwakzalverij schreef hier onlangs ook al over. FBTO is volgens de VtdK de enige zorgverzekeraar met deze mogelijkheid.

Ten tweede schijnen er volgens FBTO dus ‘echte’ alternatieve geneeswijzen te bestaan. Dat lijkt me een contradictio in terminis.

 

Filed Under: Gezondheid, Humor, Kort Tagged With: alternatieve geneeswijzen, fbto, reclame

  • « Go to Previous Page
  • Page 1
  • Interim pages omitted …
  • Page 342
  • Page 343
  • Page 344
  • Page 345
  • Page 346
  • Interim pages omitted …
  • Page 433
  • Go to Next Page »

Primary Sidebar

Steun ons via:
Een aankoopbol.com Partner (meer info)
Of een donatie

Schrijf je in voor de nieuwsbrief!

Skeptic RSS feed

  • Skepsis
  • Error
  • SBM
Fluoride-angst?
30 June 2025 - Ward van Beek
Fluoride-angst?

Raad eens’, vraagt Cor van Loveren: ‘Het is begin jaren zeventig. Hoeveel gaatjes denk je dat een kind van vijf gemiddeld had?’ Het antwoord: achttien. ‘In haast elke tand zat wel een gat.’ Gemiddeld genomen dan. Er waren ook tanden…Lees meer Fluoride-angst? › [...]

James Randi test wichelroedelopers in Australië
11 June 2025 - SkepsisSiteBeheerder
James Randi test wichelroedelopers in Australië

In 1980 bezocht James Randi Australië op uitnodiging van Dick Smith om daar een test uit te voeren met wichelroedelopers.Lees meer James Randi test wichelroedelopers in Australië › [...]

Polarisatie juist goed voor democratie?
5 June 2025 - Ward van Beek
Polarisatie juist goed voor democratie?

.Soms lijkt het wel alsof we elkaar de hele dag de tent uit vechten. Op social media, bij verjaardagsfeestjes en in talkshows zijn we het oneens over vaccins, over Gaza, over vrouwenrechten. Dat blijkt ook uit onderzoek van het Sociaal…Lees meer Polarisatie juist goed voor democratie? › [...]

RSS Error: A feed could not be found at `https://skepp.be/feed`; the status code is `404` and content-type is `text/html; charset=UTF-8`

Garden of Healing
15 July 2025 - Mark Crislip

As I read the plaques in the Garden of Healing, I thought it would be a fun project to compare the content with reality. The post Garden of Healing first appeared on Science-Based Medicine. [...]

Dr. Pierre Kory resurrects the false claim that vaccines cause SIDS
14 July 2025 - David Gorski

Dr. Pierre Kory name-checked me in a post falsely claiming that vaccines cause SIDS. I finally get around to responding. The post Dr. Pierre Kory resurrects the false claim that vaccines cause SIDS first appeared on Science-Based Medicine. [...]

The Opinion Class: Practicing Focused Protection From Reality
13 July 2025 - Jonathan Howard

A class of sheltered COVID pundits are eager to conjure an alternate history where we let the virus spread in 2020 and everything turned out just fine. The post The Opinion Class: Practicing Focused Protection From Reality first appeared on Science-Based Medicine. [...]

Recente reacties

  • Hans1263 on Bedenkingen bij het rapport over oversterfte van Ronald Meester en Marc JacobsHet is me duidelijk, @ Klaas van Dijk Het lijkt me heel simpel: wie zwijgt, stemt toe. Incompetentie en collaboratie
  • Klaas van Dijk on Bedenkingen bij het rapport over oversterfte van Ronald Meester en Marc Jacobs@Hans1263, per abuis heb ik mijn reactie op jouw bericht van 5 juli 2025 (om 21:25) op de verkeerde plek
  • Klaas van Dijk on Bedenkingen bij het rapport over oversterfte van Ronald Meester en Marc Jacobs@Hans1263, het is inderdaad erg opvallend dat de werkgevers van het trio, te weten de VU (Ronald Meester), het Radboud
  • Hans1263 on De linke net-na-het-weekendbijlage (27-2025)De bekende en verderfelijke combinatie van complotgeloof, geloof en kwakzalverij.
  • Renate1 on De linke net-na-het-weekendbijlage (27-2025)https://www.kwakzalverij.nl/nieuws/bestuur-stuurt-brief-aan-minister-en-vaste-kamercommissie-vws/ Waarom verbaast het me niet dat mevrouw Ag

Archief Kloptdatwel.nl

Copyright © 2025 · Metro Pro on Genesis Framework · WordPress · Log in